Example-based learning particle swarm optimization for continuous optimization
نویسندگان
چکیده
Particle swarm optimization (PSO) is a heuristic optimization technique based on swarm intelligence that is inspired by the behavior of bird flocking. The canonical PSO has the disadvantage of premature convergence. Several improved PSO versions do well in keeping the diversity of the particles during the searching process, but at the expense of rapid convergence. This paper proposes an example-based learning PSO (ELPSO) to overcome these shortcomings by keeping a balance between swarm diversity and convergence speed. Inspired by a social phenomenon that multiple good examples can guide a crowd towards making progress, ELPSO uses an example set of multiple global best particles to update the positions of the particles. In this study, the particles of the example set were selected from the best particles and updated by the better particles in the first-in-first-out order in each iteration. The particles in the example set are different, and are usually of high quality in terms of the target optimization function. ELPSO has better diversity and convergence speed than single-gbest and non-gbest PSO algorithms, which is proved by mathematical and numerical results. Finally, computational experiments on benchmark problems show that ELPSO outperforms all of the tested PSO algorithms in terms of both solution quality and convergence time. Crown Copyright 2010 Published by Elsevier Inc. All rights reserved.
منابع مشابه
Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملEnhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW)
So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...
متن کاملParticle swarm optimization for a bi-objective web-based convergent product networks
Here, a collection of base functions and sub-functions configure the nodes of a web-based (digital)network representing functionalities. Each arc in the network is to be assigned as the link between two nodes. The aim is to find an optimal tree of functionalities in the network adding value to the product in the web environment. First, a purification process is performed in the product network ...
متن کاملS3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization
Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...
متن کاملOptimal Placement and Sizing of DGs and Shunt Capacitor Banks Simultaneously in Distribution Networks using Particle Swarm Optimization Algorithm Based on Adaptive Learning Strategy
Abstract: Optimization of DG and capacitors is a nonlinear objective optimization problem with equal and unequal constraints, and the efficiency of meta-heuristic methods for solving optimization problems has been proven to any degree of complex it. As the population grows and then electricity consumption increases, the need for generation increases, which further reduces voltage, increases los...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 182 شماره
صفحات -
تاریخ انتشار 2012